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Abstract: Wireless body area networks (WBANs) are a research area that supports patients with
healthcare monitoring. In WBAN, the Internet of Things (IoT) is connected with WBAN for a smart/
remote healthcare monitoring system in which various medical diseases are diagnosed. Quality
of service (QoS), security and energy efficiency achievements are the major issues in the WBAN-
IoT environment. Existing schemes for these three issues fail to achieve them since nodes are
resource constrained and hence delay and the energy consumption is minimized. In this paper, a
blockchain-assisted delay and energy aware healthcare monitoring (B-DEAH) system is presented in
the WBAN-IoT environment. Both body sensors and environment sensors are deployed with dual
sinks for emergency and periodical packet transmission. Various processes are involved in this paper,
and each process is described as follows: Key registration for patients using an extended version of the
PRESENT algorithm is proposed. Cluster formation and cluster head selection are implemented using
spotted hyena optimizer. Then, cluster-based routing is established using the MOORA algorithm.
For data transmission, the patient block agent (PBA) is deployed and authenticated using the four Q
curve asymmetric algorithm. In PBA, three entities are used: classifier and queue manager, channel
selector and security manager. Each entity is run by a special function, as packets are classified using
two stream deep reinforcement learning (TS-DRL) into three classes: emergency, non-emergency and
faulty data. Individual packets are put into a separate queue, which is called emergency, periodical
and faulty. Each queue is handled using Reyni entropy. Periodical packets are forwarded by a
separate channel without any interference using a multi objective based channel selection algorithm.
Then, all packets are encrypted and forwarded to the sink nodes. Simulation is conducted using the
OMNeT++ network simulator, in which diverse parameters are evaluated and compared with several
existing works in terms of network throughput for periodic (41.75 Kbps) and emergency packets
(42.5 Kbps); end-to-end delay for periodic (0.036 s) and emergency packets (0.028 s); packet loss rate
(1.1%); residual energy in terms of simulation rounds based on periodic (0.039 J) and emergency
packets (0.044 J) and in terms of simulation time based on periodic (8.35 J) and emergency packets
(8.53 J); success rate for periodic (87.83%) and emergency packets (87.5%); authentication time (3.25 s);
and reliability (87.83%).

Keywords: wireless body area networks; internet of things; blockchain; secure cluster based routing;
quality of service (QoS)

1. Introduction

A wireless body area network (WBAN) is a kind of sensor network that assists in
resourceful patient healthcare monitoring. WBANs are also referred to as body sensor
networks (BSNs). Many studies have recently been conducted in WBAN for continuous
patient monitoring [1–5]. Unfortunately, the current WBAN does not meet the QoS for a
patient [6,7]. QoS provisioning is an important consideration in WBANs that is achieved
by resolving three challenges: energy efficiency, mobility prediction (adaptiveness) and
security [8–10]. In general, WBAN communications are classified into three layers of
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communication: (1) intra-WBAN, (2) inter-WBAN and (3) beyond WBAN. Recent studies
discussed any one of the WBAN communications [11].

Integration between WBAN and IoT provides remote health monitoring services for
patients [12]. Due to the limited resources of IoT sensors, they must be efficiently utilized,
but solving this issue is a critical issue. In particular, when moving the patient’s body,
connectivity among sensor nodes and the sink node fails. This causes massive packet
losses, and critical packets are dropped [13]. Clustering is one of the solutions to meet the
energy consumption issue. In this approach, either a sink node or the best sensor node in
the human body can act as a cluster head (CH). Through the CH, medical data packets
are forwarded. This approach requires optimum and fast CH election to aggregate and
transmit the packets [14]. Similar to energy efficiency, security is the biggest challenge in
WBAN because nodes are communicated via a public channel, so it is vulnerable [15–17].
Blockchain is a promising solution to provide adequate security for WBAN [18–20]. It acts as
a decentralized entity to avoid a single point of failure. However, the traditional blockchain
architecture fails to provide data confidentiality for the resource-constrained environment.

Blockchain technology is referred to as the transparent distributed technology in the
networking domain in which all the participants can own a ledger. Blockchain technology
is also referred to as a peer-to-peer method in which all the participants collaboratively
manage the network. Blockchain technology has provided the following advantages such
as interoperability, scalability, data integrity and traceability [21,22]. There are four types
of blockchain:

• Public blockchain: All participants can have rights to read and write, no centralized
entity, high credibility and also high throughput and energy consumption.

• Private blockchain: Only the particular organization that owns the blockchain could
have rights to access or write. It is a centralized blockchain with less credibility. It
consumes less energy with a high throughput.

• Consortium blockchain: It can be owned by a group of organizations to which all
the group organization participants could have access to read and write. It is also
referred to as a partially centralized blockchain and has less energy consumption with
a high throughput.

• Hybrid blockchain: Similar to the public blockchain, a hybrid blockchain could give
access to read and write to all the participants. It provides partial centrality with
medium credibility.

Due to the support of blockchain-based secure systems, medical records cannot be
tampered with and protected from unauthorized access [23–26]. The proposed work also
adopts blockchain technology for secure data storing and managing purposes because the
energy efficiency may be reduced by the security threats.

1.1. Motivation and Objectives

The major aim of this research is to perform energy efficient health monitoring with
low delay and high security. In WBAN, a patient’s remote healthcare monitoring system
design invoked various challenges [27]. Current WBAN approaches do not ensure end-
to-end security, low energy consumption and can cause delays because it is achieved
either with intra-WBAN or beyond WBAN. When WBANs communicate with the same
channel simultaneously, then they interfere with each other. For critical data transmission,
an idle channel is required and periodical data requires the best channel to transmit it
without any interference. Due to single-hop communication for the critical data, high
energy consumption and end-to-end delay occur. At the single hop, the contention window
size (CWS) must be adjusted to transmit packets according to QoS constraints. None of
them considered environment-related data on a patient to monitor their health. We are
motivated by the following problems that occur during health monitoring in which the
major issues are listed as follows,

• Higher energy consumption: Frequent sensor replacement is necessary when sensors
drain their energy.
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• Security and privacy: Due to wireless channels and limited energy resources of sensors,
data confidentiality and privacy are a failure.

• Mobility prediction: Communications must be energy-efficient and secure in patient
dynamic movements.

This research objectives designed in this paper are as follows,

• To propose an energy-efficient, secure and delay-aware health monitoring system that
allows patients to sense and transmit data in an energy-efficient manner.

• To ensure QoS constraints while collecting and transmitting the data from all layers
(intra-WBAN, inter-WBAN and beyond WBAN).

• To safely store the sensed data in a storage server with satisfying the security require-
ments (data confidentiality, and integrity).

In this paper, we proposed a blockchain-assisted delay and energy-aware healthcare
monitoring system for the early transmission of emergency packets to the respective
authority to achieve these objectives.

1.2. Research Contributions

This work mainly focuses on energy efficient health monitoring with low delay and
high security. The major contributions of this paper are sorted as follows,

• We deployed dual sinks such as emergency sink and periodic sink to collect the data
without congestion. All critical packets are forwarded to the health center without
any delay.

• All patients who need to monitor healthcare are registered to the key management
server (KMS) using the extended PRESENT algorithm. Clustering is generated us-
ing the best objective function (BOF), which is computed by node residual energy,
transmission power, bandwidth, and signal to noise ratio (SNR) via spotted hyena
optimizer (SHO).

• Faulty data packets are removed in the sink with the use of analyzing the records
and it results in low bandwidth and energy consumption. If the CH is drained of
its potential to transmit the data, then the next node is selected among the patient
body sensors.

• The idle channel is used for emergency packet transmission and selects the optimum
channel for the remaining two medical packet types by considering RSS, SNR, channel
capacity and radio power. Hence, interference is eliminated in this step.

• We transfer each normal data packet via multihop transmission, which considers
packet size, data traffic type, TTL, required delay and data rate. A multi-hop data
routing using best forwarders selection by considering node residual energy, RSS, path
duration and distance to the CH.

• We sense and classify the environment and healthcare data for each patient using the
deep reinforcement learning algorithm. We proposed two stream-DNN in DRL, which
outperforms the conventional Markov model.

• We propose a PRESENT algorithm for encryption of medical data and critical data
directly transmitted to the CH and then forwarded to the PBA. Finally, data packets
are stored in the blockchain and cloud servers based on packet sensing type.

1.3. Paper Layout

The rest of this paper is organized as follows: Section 2 describes the existing research
works and their deficiencies. Section 3 describes the main issues determined and emerging
in this environment. Section 4 details all the defined solutions that solve security, QoS
and energy efficiency issues. Section 5 demonstrates the experimental evaluation of the
proposed work in comparison to the existing works, and Section 6 concludes the proposed
solution with the extension of potential future research directions.
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2. Review of Related Literature

This section illustrates the previous works studied for secure data transmission for
patient healthcare monitoring in a WBAN-based IoT environment. Most of the works have
concentrated on cryptography-based security mechanisms and less focused on obtaining
the minimum energy consumption for body and environment based sensors.

2.1. QoS Achievement in WBAN/Iot

The authors in [28] present a WBAN architecture with dual sink nodes. Line of sight
(LoS) and non-line of sight (NLoS) based clusters were formed, and then two sinks were
placed. The major objective of this paper was to minimize the energy consumption of the
network. After the data are sensed, critical data are sent to the sink directly, and periodical
data are sent through the next forwarders. Equal time slots are assigned for all sensors
deployed on a patient, which must be slotting time according to the node priority. An
IoT-based BAN network architecture is presented to monitor human health [29]. Initially,
sensed data were classified and assigned a priority level. Based on the priority level, data
are routed to the sink node. The THE (temperature heterogeneity energy) protocol is tested
for a WBAN with eight different sensors, including a temperature sensor, insulin pump,
SPO2 sensor, EMG sensor, CGM sensor, BP sensor, EEG sensor and ECG sensor. To transmit
periodical data, two hops are used as the relay nodes, but an optimal selection of relay
nodes is important. In [30], the authors aimed to achieve energy efficiency, reliability and
transmission efficiency. To achieve these aims, a multiobjective based routing protocol
is designed by considering residual energy, bandwidth, transmission rate and hop count
to the sink node. Routing is executed based on the maximum benefit function. This
weight function is adjusted according to data priority. In this paper, the next forwarder is
dynamically selected for data transmission. Data classification is significant to perform
before data routing because successful data transmission shows high QoS performance. A
priority-based MAC protocol is designed [31] to show better performance achievement for
WBAN. A prior knowledge-based weighted routing algorithm is presented to choose the
optimum route, and it is computed by residual energy, distance, delay and link stability.
To further reduce energy consumption, graph-based sleep scheduling is proposed. In the
coordinator node, a split and map-based NN is elaborated to perform packet classification.
Then, packets are sent to the respective sink node based on the packet size, data traffic
type and TTL. To forward data packets to the corresponding sink node, QoS constraints
such as delay, bandwidth and data rate are needed. A queuing game approach is proposed
to transmit delay-sensitive medical data beyond WBAN [32]. The proposed approach
addresses the transmission of random arrival of medical packets on each gateway. At each
gateway, packets are classified into multiple classes: one class specifies the emergency
alarm, and other classes specify the nonmedical classes. Due to the consideration of several
QoS constraints, packets are queued according to their classes. At each smart gateway,
running the game theory approach consumes more time and causes more waiting time to
send the critical data packets. Network modeling with BSs and multiple gateways leads to
high energy consumption and packet loss ratios.

The authors in [33] focus on beyond WBAN communications to handle the massive
medical data packets from each WBAN. A queuing system is designed to classify large
medical data packets into multiple classes. It is based on the time and priority of the data
packets. To address a relaxed queuing problem, an optimal scheduling scheme is presented.
The drawbacks in this work are:

• It is complex to design a large scale WBAN environment since medical packets are
gathered at each gateway in a random way, which leads to large end-to-end delay.

• Some of the medical packets are necessary to meet the QoS requirements, especially
delay, which must be met by the predefined period of time.

In [34], two significant parameters are considered for the best next hop selection
to route medical data packets to the BS. The link quality and energy utilization rate are
computed for each on-body sensor. A sensor with high link quality and residual energy is
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selected as the next hop. The drawbacks in this work are limited metrics to select the next
hop and not suited to transmit critical data.

An optimized health monitoring framework was introduced in [35]. This work consists
of entities such as cluster members, cluster heads and core networks. In this work, the
cluster head is selected by introducing three optimization algorithms, namely, ant colony
optimization, multi objective particle swarm optimization and the comprehensive learning
particle algorithm. The selected cluster head acts as a gateway between the core network
and members in the clusters. This work employs a cluster head as a gateway between the
core network and members in the clusters, which affects the QoS constraints in terms of
latency and throughput.

2.2. Security in WBAN/Iot

A secure healthcare monitoring scheme is employed [36] to monitor and control the
smart healthcare system. To design a secure scheme, the authors integrated two artificial
intelligence algorithms, a fuzzy system and neural network classifiers. It decides the
priority level of the data based on the collected sensor’s information. From the patient
body, collected sensor data are sent via the GSM module to the Azure IoT hub. Secure
communications have not been achieved successfully, which increases the security loss
of the network. A secure and efficient anonymous authentication scheme was presented
in [37] to preserve the location privacy of WBAN patients. The author proposes the
Chinese remainder theorem (CRT) to keep the user’s location details more secret from
unauthorized attackers. In this scheme, both doctors and patients are authenticated with
their location to protect it. Experiments proved that the proposed work outperformed
the impersonation attack, message modification attack, replay attack, man-in-the-middle
attack and eavesdropping attack. To keep the location private for both the doctor and
patient, the TA must be decentralized because when the TA fails to provide security, then
the whole security is lost. A secure certificateless biometric authentication with group
key management is presented in [38] for WBAN. However, the coordinator node plays a
vital role in collecting the medical data because it acts as the personal controller for each
WBAN. For authentication, electrocardiogram (ECG) records are used as the biometric
feature. Then, group key management is executed for all validated sensor nodes in the
WBAN. Lack of security and privacy due to ECC and one-way hash function is not suited
for resource constrained IoT sensors.

A two level lightweight method is presented [39] for determining anomaly data from
massive sensor readings. First, the game theory approach is applied to find the spatial
correlation between the sensor readings and determine the dynamic changes in the WBAN.
Second, the Mahalanobis distance is presented in the local processing unit (LPU), which
has a global view in the multivariate analysis. The overall trust for sensors is very poor,
and there is higher energy consumption in fault detection.

The authors in [40] introduced a secure framework for WBAN-IoT in healthcare
systems. This work employs five layers, namely, the collection of the data layer from the
WBAN sensors to the gateway agent, the second layer is responsible for data routing to the
local gateway server from the gateway agent, the third layer is responsible for the routing
of data to the distant server, and the fourth layer is responsible for data routing to the fog
layer where controllers are deployed for providing security to the data and classify the data
as critical and noncritical. Finally, all the data are stored in the private cloud. This work
provides security to the data in the fog layer; however, the authenticity of the users was not
considered, which leads to security threats and various attacks in the networks.

2.3. Blockchain in WBAN/Iot

The BSN energy efficient and secure scheme is presented in [41] heterogeneous sensor
networks. All biosensors in the network use a certificateless cryptography scheme to
solve security and privacy issues. A signcryption (online or offline) method is considered
to reduce the difficulty in sensors. If patient data are known, then an online process is
implemented, whereas the offline process is executed if the prior knowledge is unavailable.
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For secure patient transactions, hybrid blockchain technology is involved. More energy
consumption and high computations are required while processing in the online phase.

A new storage model was studied in [42] to store the collected data using blockchain
technology in a WBAN. In the blockchain, a designated verifier-based sequential aggregate
signature scheme is presented to guarantee that the medical records can be viewed by
the corresponding WBAN patient, i.e., privacy is protected to unauthorized patients. The
main concern of this paper is to reduce the energy consumption for data computations and
transmission. Likewise, the main novelty of this paper is to minimize the storage space
of the block by generating the signature. Data storage in blockchain improves the storage
space, but security is not stronger. Blockchain technology is focused on the eHealthcare
management system to provide the interoperable WBAN [43]. This system follows the
IEEE 802.15.6 specification, and the proposed system has provided the advantages of a high
security protection level, low hardware utilization, and stable performance. This is well
suited for a large-scale environment, but emergency packets are delayed more. A secure
cloud server-based health data auditing [44] is implemented in blockchain technology. For
this purpose, a third-party auditor (TPA) is created to play the role of public auditing in
which the integrity of the outsourced medical packets is verified periodically. In this paper,
a decentralized security framework is added, which is integrated into the data auditing
element for security provisioning and is referred to as the Ethereum blockchain technique.
In addition to TPA, the private key generator is deployed to generate the public and private
keys. Each health record is maintained in TPA and is transferred into Ethereum. It is not
suitable for resource-limited WBANs, and its performance is high when small sensors
are deployed.

Table 1 illustrates the overall research gaps in the WBAN-IoT that are identified from
the in-depth literature in terms of QoS, energy wastage, and security, which are solved by
the proposed solution, and the gaps are filled with the best solutions for QoS achievement
in WBAN-IoT.

Table 1. Research gaps.

Area Focused Research Gap

QoS Achievement [28–34]

• Direct data transmissions without considering clustering to the
sink nodes were achieved in some of the existing papers which
affect the QoS in terms of high latency.

• Many of the existing papers perform clustering however, the clus-
tered data in the gateway was not efficiently handled in terms of
delay and throughput which also affects the QoS.

• The routing protocols used in the existing research are limited with
less reliability in communication and suffer from transmission
errors which also affect the QoS.

Security Provisioning [36–39]

• Some of the existing works not considered authentication rather
they consider data security which also affects the patient’s privacy.

• Most state-of-the-art works employ heavy-weight cryptographic
algorithms for data encryption and authentication, however, which
leads to high energy consumption in the WBAN-IoT networks.

• Some of the existing work limits with considering the minimal
amount of security metrics for providing security in WBAN-IoT
however, which imposes major attacks in the WBAN-IoT environ-
ment such as false injection attacks, impersonation attacks, etc.

Blockchain [41–44]

• Conventional blockchain models are limited with high energy con-
sumption, latency, and scalability issues in terms of block creation
and validation time.These problems in the conventional blockchain
are not suitable for resource-constrained WBAN-IoT.

3. Problem Statement

This section summarizes the main problems that exist in the current literature on
WBAN-based IoT. In [45], the authors objective is to minimize the energy consumption for
all sensor nodes deployed in the human body. To meet this objective, the energy harvested
aware routing protocol (E-HARP) was proposed. In the E-HARP, two tasks are executed
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such as dynamic CH election and data routing in a cooperative manner. Initially, CHs are
elected by the cost factor (CF), which is calculated by the node residual energy, transmission
power needed, signal-to-noise ratio (SNR) and energy loss. The problems in this work are
as follows,

• The clustering process is not effective since it does not ensure that the CF computation
always produces the optimum solution and the computation of CF tends to be time
consuming when a large number of sensors are used. This paper minimizes the
redundant data, but it does not eliminate anomaly (faulty) data. Thus, it results in
large bandwidth and energy consumption for CHs.

• When two sensors communicate with the same channel concurrently, they interfere
with each other. Multihop transmission via nonoptimal nodes increases energy con-
sumption and reduces the delivery rate.

Then, the optimal cost function (CF) was computed [46] in the E-HARP. The optimal
cost function was computed using thelLink SNR, transmission power required, distance
between nodes and total energy harvested and residual. Two sink nodes are deployed
according to the LOS and high RSSI value, and these nodes act as CHs. However, a patient’s
critical packets tend to be waiting for a longer time, and thus energy consumption is higher.
It is not suitable for large scale environments. It is required to sense the environment
because of the large size of faulty packets generated in body sensors, which also consume
more energy.

A remote monitoring system was presented in [47], which contains a patient centric
agent (PCA) that collects and processes the sensed packets from body sensors. The PCA
component is an entity deployed by the blockchain and preserves data privacy. When
the distance of the critical sensors is far from the SDP, energy consumption is very large
because body sensors directly send the sensed data to the SDP and then to the PDA. It is
not appropriate to transmit emergency data packets since the use of SDP intermediately
causes a longer delay when delivering critical data to the PCA. These packets are encrypted
using the AES counter mode (AES-CTR). In this algorithm, the bit-flip error is high, and
after decryption, it is presented in some of the blocks of ciphertext. If a counter value
is inappropriately used, then all security is lost. Delay aware scheduling is executed for
various kinds [48] of medical packet transmissions in IoT-based healthcare applications.
This paper focuses on beyond WBAN communication, which is data transmissions between
gateways and the base station to the remote monitoring system. For scheduling, medical
packets are sorted according to the priority awareness and delay constraints. However, a
single BS collects all the sensed packets from K-gateways, which is ineffectual to collect all
packets. A single BS suffers from large network density, handling different traffic flows
and higher energy consumption.

• Each medical packet is transferred to the BS based on delay constraints. For example,
the glucose monitoring delay requirement is <20 ms. When it is transmitted frequently,
then the other delay-constrained emergency packets are dropped. If a medical packet
has waited more than the delay time, then the packet is dropped from the scheduler.

• The Markov chain does not perform well when the actions are independent and it
does not learn the environment to find the current state. Especially, it is needed for
WBAN.

• The participation of multiple sensor nodes (256 heterogeneous sensors) causes conges-
tion in data transmission and thus fails to transmit critical data or is dropped.

A robust authentication scheme was presented in [49] for patient authentication. User
smart cards, biometric features and pseudo identities are used, which are held in gateway
for each patient. In this step, the timestamp was used to verify the user authentication.
This paper uses one-way (1 W) hashing for user credential hashing. In this work, the user
authenticated to GW via a public channel, and thus, it is vulnerable to obtaining patient’s
medical data. To compute the new password, a smart card is necessary. If the smartcard is
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lost, then it is possible to change the password by any hackers. A one-way hash does not
provide high security since the hashed data can be retrieved easily.

4. System Model

In this research, we address the energy efficiency and security issues for QoS provision-
ing in the IoT-WBAN environment. Hence, we designed Energy and Delay aware medical
data transmission framework in an IoT based WBAN.

4.1. System Model

The overall system architecture is depicted in Figure 1. Three layers are designed in
this work, including layer 1: Intra-WBAN communications, layer 2: inter-WBAN commu-
nications, and layer 3: beyond WBAN. Our proposed work consists of entities such as:

Figure 1. System architecture.

• Body sensors: The body sensors (Bs = Bs1, Bs2, . . . Bsn) are deployed in patients’ bodies
to monitor the patient health conditions which monitor such as heartbeat rate, BP
rate, etc.

• Environmental sensors: The environmental sensors (Es = Es1, Es2, . . . Esn) are located in
the environment to monitor the environmental changes based on the patient’s health
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condition. These sensors monitor the air quality, humidity, etc., in the surroundings of
patients’ environment.

• Patient block agent (PBA): The patient block agent is responsible for the transmission of
data and also provides authenticity to the users in which three modules are involved
namely classifier and queue manager, security manager, and channel selector for
classifying and securing the data.

• Emergency sink and periodic sink: These sinks are responsible for storing the data on the
internet and cloud server. The emergency sink (SE) is used to share the critical data
from the PBA while the periodic sink (SP) is used to share the normal data from the
PBA which helps to transmit the health information with low delay and congestion.

• Blockchain(key management server—KMS): Blockchain is used for the security and pri-
vacy of the WBAN IoT networks. The KMS in the blockchain is responsible for
managing the key from the users during registration and authentication to verify the
legitimacy of the users.

4.2. Key Distribution

We assume that patients move from one place to another dynamically. For this case,
we design a secure, energy-efficient and delay-aware healthcare monitoring system for
WBANs. We registered each patient to the KMS by their ID, Pwd, location and biometric
records. Patient Pi needs to submit {ID, PW} to the KMS. The KMS first verifies ID and
Pwd for the corresponding patient. When ID and Pwd are correct, then the KMS verifies
the patient’s current location and biometric records. Finally, SK is generated for registered
patients. This step is formulated as follows,

Ui → {ID⊕ PW} → KMS (1)

KMS→ {SK(P), i f (ID&&PW&&BR&&L == True)} (2)

If the patient is successfully registered, the secret key (SK) is generated and forwarded
to them and is also stored in the PBA. For authentication, we verify these entities. For
authorized patients, data transmission is implemented, and data access is allowed for
patients who have the secret key. A flow of security provisioning is represented in Figure 2.
The encryption and decryption process is explained in the following sections.

Figure 2. Security evaluation for WBAN.
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4.3. Cluster Based Routing

We form clusters from the sensors deployed in the patient. Table 2 describes the
number of IoT devices used for patient monitoring.

Table 2. Patient healthcare data.

Data Collection Factors IoT Devices Parameters Sensing Event Type

Body sensors related data

Heart sensors,
Q-sensor,

EEG devices,
ECG monitor,

smart wearable’s,
Gastro sensors.

Heart Rate,
Blood Pressure,

Oxygen Saturation,
Temperature,
Blood Sugar,

Respiration Rate,
GI tract,

ECG,
EEG

High Heart Rate,
High Blood Glucose Level,
High Blood Glucose Level,

Stress, Anxiety,
and Restlessness

Environment related data

Temperature sensors,
Humidity sensors,

Chemical detectors,
Noise sensors

Temperature,
Air Quality,
Noise Level,
Toxic Waste

High room temperature,
High noise level,

High light intensity

Cluster head is implemented by computing the best objective function (BOF), which
works out by node residual energy, transmission power, bandwidth and SNR via spotted
hyena optimizer (SHO) [50]. In the MAC protocol, the data traffic type field is added,
which shows the five different packets. When the sensor senses an emergency packet,
then it will be directly sent to the CH. For the other four different packets, the optimum
route is selected. We propose multihop data routing using optimum forwarder selection
by considering the node residual energy, RSS, path duration and distance to the CH. The
SHO algorithm finds the best CHs using four stages: searching, encircling, hunting and
attacking prey. Based on the proper balancing between exploration and exploitation, the
optimum CHs are determined. When the spotted hyena’s cooperation is higher, then the
fitness values among sensors are also high.

The fitness is computed for the following parameters,

• Residual Energy Level: This parameter denotes the remaining amount of energy of
the node. It is computed using the difference between the initial energy level and the
total energy consumed after one round. A node with a higher residual energy level
becomes CH and hence the CH is responsible for data collection and aggregation.

• Distance: This parameter is well-known in that it means the distance between one
body sensor and the nearby sensor. A node with less distance is applicable for CH
election. It is calculated as follows:

Ds =
√
(Xi − Xj)2 + (Yi −Yj)2 (3)

• Path Duration: This parameter is the amount of time taken for packet transmission. It
is measured using a number of relay nodes to one node.

The computation of RSS is explained in the following section. A node with higher
residual energy, less distance, less path duration and high RSS is selected as the CH. The
remaining nodes are connected based on their values. To select the route, we applied multi-
objective optimization on the basis of ratio analysis (MOORA). It is a decision making
algorithm that selects one or more alternatives from a set of available nodes. The first stage
of the MOORA algorithm is to construct the decision matrix DM for the given problem.
The objectives and alternatives are listed in the M × N matrix and the performance of
DM is dependent upon the alternatives and also on the input parameters. It is expressed
as follows,
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X = DM(i, j)M×N =

 x11 x12 x1n
x21 x22 x2n
xm1 xm2 xmn

 (4)

xij is the performance value of the ith alternative on the jth criterion, and M and N are
the alternative rows and columns, respectively. Then, the alternative performance value is
computed against the other criteria that can be calculated as follows:

x∗ij =
Pij√

∑m
k=1 P2

kj

(5)

where x∗ij is a range between 0 and 1 and it produces the normalized performance for each
input criterion.

The normalized values for the criteria are computed using nonbeneficial criteria. The
sum of the nonbeneficial criteria is subtracted from the beneficial criteria. The result
is the overall score value for the alternative. Attaining the best set of alternatives is the
termination process of the MOORA algorithm. The special feature of the MOORA algorithm
is to determine the best alternative by multiple objectives. Alternative values are arranged
in ascending order, and the best node is selected based on the alternative value. In previous
works, the sensor node sends sensed information through single hop communication.
However, this type of communication is not available at all times, whereas some existing
works have used multihop communication in which next forwarder selection was not
optimal. Hence, packet losses are very high. Furthermore, this can be applied when a large
number of sensors are placed over the body. Our proposed routing protocol computes the
weight value for the best forwarder selection.

4.4. Contention Window Size Adjustment

In addition, we adjust the contention window size (CWS) by QoS factors: distance, RSSI
and residual energy. This process reduces the end-to-end delay and energy consumption
for transmitting emergency packets. Table 3 shows the data traffic specification. All the data
are prioritized based on health parameters such as temperature, heart rate, blood pressure,
respiration, ECG, etc. Based on these parameters, the data traffic type is classified into three
types, as mentioned in Table 3. Depending upon the values of the health parameters, the
data are queued to any one of the three queues.

Table 3. IEEE 802.15.6-based CSMA/CA-MAC Protocol Data Traffic Specification.

PHP (Octal Symbol) CWSmin CWSmax Data Traffic Type

4 ∼= 1 ∼= 3 Emergency (VHP)
3 ∼= 2 ∼= 6 Periodic (HP)
2 ∼= 4 ∼= 8 Video (NP)
1 ∼= 4 ∼= 8 Voice (NP)
0 ∼= 4 ∼= 8 Others (NP)

Factors to adjust the CWSmin and CWSmax are distance, RSSI, residual energy. PHP—patient health priority,
VHP—very high priority, HP—high priority, NP—normal priority.

4.5. Patient Block Agent

PBA plays a vital role in this research. It acts as a coordinator that is authenticated
to the blockchain using the four-Q-curve algorithm. It is an asymmetric cryptography
algorithm whose performance is higher than the ECC. It aggregates data from the CHs and
is then sent to the following entities:

4.5.1. Classifier and Queue Manager

In this entity, aggregated data are classified into three classes, namely, emergency,
periodical, and faulty data, using the two stream deep neural network (TS-DNN) in
deep reinforcement learning. TS-DNN determines the classes from the multiple available
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inputs: packet size Ps, data traffic type DTt, time to live TTL, health parameter, and QoS
constraint (delay, data rate and bandwidth) QoSCS. In the first stream of DNN, body sensor
information is forwarded, whereas in the second stream of DNN, environmental sensors are
forwarded. In this architecture, BAN sensed and environmental information is considered
for classification. Each DNN consists of three kinds of layers: an input layer, hidden layers
and an output layer. The flow and working of the classifier and queue manager are depicted
in Figure 3. The process of each layer in DNN (1) and DNN (2) is illustrated in the following.
The TS-DNN is explained in Algorithm 1.

• Input Layer: This is the first layer that is processed with the input neurons, and BAN
packets and environment events are forwarded to the input layer of DNN (1) and
DNN (2), respectively. Thus, the sensed packets from the body and environment
sensors are represented as follows:

b(s(i)) = {b(s)1, b(s)2, . . . , b(s)n} (6)

e(s(i)) = {e(s)1, e(s)2, . . . , e(s)n} (7)

• Hidden Layers: Different numbers of computing weight values for each input param-
eter of the sensed packets. Based on the input requirements and the expected result,
the number of hidden layers is defined. In the previously mentioned parameters,
the fitness value is computed in hidden layers. Finally, the fitness function F( f ) is
expressed as follows,

F( f ) =

(
n

∑
S=1

τx + µx + αx

Γx(C1, C2, C3)

)
(8)

where S refers to the sensor nodes of n numbers (i.e., {S = 1, 2, . . . , n}), τx is the packet
size weight value, µx is the different traffic type weight value, αx is the TTL weight
value, Γx is the weight value for QoS constraints and C1, C2, C3 represents the delay,
data rate and bandwidth.

• Output Layer: This layer predicts the classes according to the aforementioned param-
eters. It chooses the optimal class from the fitness values computed for each packet.
Mathematically, it is formulated as follows,

O(L) = ϑ(F( f )mϑ(F( f )M−1ϑ(. . . ϑ(F( f )1)))) (9)

where ϑ is the activation function.

Figure 3. TS-DNN environment.
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Algorithm 1 TS-DNN.

1: Input: b(s(i)) = {b(s)1, b(s)2, . . . , b(s)n}
2: e(s(i)) = {e(s)1, e(s)2, . . . , e(s)n}
3: Output: Three Classes
4: Begin
5: //TS-DNN algorithm using DRL
6: Initialize all b(s(i)), and e(s(i)) for Q(S, a)
7: Repeat (For Each Episode)
8: Choose a from S by policy derived from Q
9: Input Layer

10: for ∀BANi do
11: Take action a and observe r and s
12: Q(S, a)→ Q(S, a) + τ[r + γMaxa, Q(S

′
, a
′
)−Q(s, a)]

13: end for
14: for ∀Si ∈ S, do
15: Learn← τ, Γ, µ, ζ
16: Compute F( fi)
17: Assign F( fi)→ weight f unction
18: end for
19: Collect F( fi) from all neurons
20: Compute O
21: Return (classes)
22: End

We classify the fault data by considering training set values. For the currently trans-
mitted packet, we compute the relative difference factor (RDF), which shows the incorrect
sensor readings. The notation RDF is calculated by,

S(sr(c), (p)) =
Sr(c ∗ p)
|c| × |p| =

n

∑
i=1

i(c ∗ p)√
∑n

i=1 C2
i ∗
√

∑n
i=1 P2

i

(10)

where Sr(c ∗ p) denotes the sensor readings for current and previous packets. After the
classification, each class of the packets is put into a separate queue, and it is organized by
the queue manager so that we nearly used three queues: emergency queue (EQ), periodical
queue (PQ), and faulty queue (FQ). The FQ packets are used to find the RDF and send the
alarm message to the particular sensor via PBA. To process all medical packets without
any packet drop, we proposed Reyni entropy Rε, which runs all packets and changes the
processing of one queue into another queue by computing the input parameters. Rε is the
order of δ, where δ ≥ 0 and δ 6= 1 are defined as,

Hα(x) =
1

1− α
log

(
N

∑
i=1

Pα
i

)
(11)

where x is the discrete random variable with the possible result as 1, 2 . . . n and correspond-

ing probabilities are pi =
1
n

for all i. . . n. Then, all the Renyi entropies of the distribution

are equal: Hα(x) = logn, and Pα
i represents the input parameters current values and α is

the weight value, which ranges between 0 and 1. Finally, the packets are transmitted to the
physician, ambulance, caregiver and pharmacy to perform further actions.

4.5.2. Security Manager

In this entity, classified packets are encrypted using the extended-PRESENT algorithm,
which is a lightweight blockcipher encryption algorithm. This extended version uses fast
bit permutation instruction, which consumes less energy than the traditional PRESENT and
AES algorithm. This algorithm consumes a small amount of memory in all programmed
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devices due to its reduced size which also minimizes the computation time when compared
with other cryptography algorithms.

To mitigate the issues of PRESENT, i.e., low security strength (comparatively higher
than previous symmetric algorithms), we proposed a modified algorithm in which permu-
tation operation is changed with respect to the fast bits based permutation operation. This
step further reduces energy consumption and provides higher security and reliability to
the body sensors. In the first step, a secret key is calculated using patient input parameters
such as ID, PWD, location and biometric records. However, key generation is implemented
using two types of keys such as 80 bits and 128 bits. Each type of key strength is used in
31 rounds of operation which performs the XOR operation that introduces the round key
Ki for 1 ≤ i ≤ 32, where K32 is used for post whitening. In this paper, 80 bits of key size are
used and the proposed PRESENT algorithm is presented in Figure 4. Computing a security
key for the cluster is innovative for this work in which the PRESENT algorithm uses the
dynamic keys of cluster members for key generation.

Figure 4. Extended version of PRESENT algorithm.

Let us assume that a cluster with M members is S1, S2, S3, . . . , SM. Every sensor node
consists of a secret key as SK1, SK2, SK3, . . . , SKM consistently. In the proposed work, the
CH is intended for generating ot−ℵ in each round R. For that, it put on XOR operations to
the secret keys for its member nodes. ot− ℵ is generated at time t1 as follows,

ot− ℵ = SK1 ⊕ SK2 ⊕ SK3 · · · ⊕ SKM (12)

Similarly, if the cluster is organized with dynamism due to less energy and link quality,
then the CM’s table is adapted according to the CH. Consequently, in the next round, the
CH generates ot− ℵ with new CM keys. In this way, the cluster key is changed at each
time. The generation of ot− ℵ achieves encryption as in the PRESENT algorithm. The SKi
is XOR with the packets on every round that is caused by the previous round. First, the
plain text is XOR with t− ℵ, and then ot− ℵ is shifted and provides the security key. The
first part of the XOR text is again over XOR with the round key. In this way, 31 rounds
are applied to generate the ciphertext for aggregated packets. The pseudocode for the
PRESENT algorithm is described in Algorithm 2.
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Algorithm 2 OT-PRESENT algorithm.

1: Input: Packets P(i) and SK1, SK2, SK3, . . . , SKM
2: Output: Ciphertext o f P(i)
3: Begin
4: // OneTime Security Key generation
5: for ∀Si ∈ S do
6: Prepare← SK1, SK2, SK3, . . . , SKM
7: Create← ot− ℵ
8: end for
9: // PRESENT encryption

10: R← 1 // R= round
11: state← Plaintext (P)
12: While (R<31),
13: SK = ot− ℵ
14: state← SK⊕ State
15: state← SBoxLayer(State)
16: // Extended-PRESENT uses revised Permutation Function
17: state← FastBitpermutationlayer(State)
18: R← R + 1, do
19: R← rightCircularShi f t(ot− ψ, 19)
20: SK[76− 79]← SBoxLayer(Key[76− 79])
21: SK[15− 19]← ot− ℵ[16− 19]
22: end do
23: End While
24: if (R=31), then
25: lastSK ← generateKey(Key, R)
26: State← State⊕ lastSK
27: Ciphertext o f P(i) ← State
28: end if
29: End

The pseudocode of the proposed OT-PRESENT algorithm is depicted for 80 bits
of key strength. The proposed extended version of the PRESENT algorithm uses quite
simple XOR operations that are comparatively lightweight than traditional PRESENT and
other symmetric algorithms. Furthermore, this algorithm increases the security level of
the system.

4.5.3. Channel Selector

Upon receiving the critical data, an idle channel is selected to transmit the data without
delay, whereas periodical data are forwarded via the best channel. It is determined by the
multi-objective-based channel selection scheme from the multiple inputs: RSS, Ress, SNR
s/nr, channel capacity Cct and radio power Rpr.

RSSI = tp + ag − pl (13)

RSSI is a significant parameter that measures the total received signal with respect to
the noise. RSSI is computed using tp and ag which are transmit power and antenna gain,
respectively, and pl is the path loss.

The best channel is chosen for forwarding the periodic packets. Ress represents the
sum of the average of the total power obtained from the specific antenna. The higher the
signal value is, the higher the RSS. The SNR estimates the value of accurate signals based
on the noise present in them.
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The signal-to-noise ratio measures the ratio of the valid signal with respect to the noise
present in it. The parameter s/nr is computed as follows,

s
nr

= 10 log10
Psg

PNs
(14)

The terms Psg and PNs denote the amount of signal and noise present in a particular
signal. Higher values of s/nr imply the presence of more signal than noise. Furthermore,
the channel capacity of the signal is computed mathematically using Shannon’s theorem
given below,

Cct = bw ∗ log2(1 + s/nr) (15)

Where bw is the bandwidth, which is identified as the amount of data transfer rate
that exists in the channel. On estimates, the three significant parameters of a channel and
the best channel are selected. The radio power consumption is different for each packet,
and hence, the dynamic value of the radio power is computed in the running state. The
determined channel ensures successful data transmission without any delay or loss. With
the use of channels, packets are encrypted at the PBA and forwarded to the corresponding
sink node.

Finally, the data reach the blockchain according to the data traffic type. If the sensed
packet is critical, it is first sent to the healthcare unit and then stored into a cloud server,
whereas the periodical data are stored in the cloud server and sent to the healthcare unit.

5. Experimental Results and Discussion

In this section, we illustrate the performance of the proposed B-DEAH architecture.
This section is categorized into three sections: simulation environment, comparative analy-
sis and security and efficiency analysis of the proposed B-DEAH architecture based on the
existing works.

5.1. Simulation Environment

The proposed B-DEAH model is constructed using the OMNeT++ simulator, which is
suitable for body area networks. The programming language supported in this tool is C++.
Furthermore, WBAN is modeled by the network description (NED) language, and it uses
the special network module MiXiM. It provides useful built-in modules such as battery,
channels, packets, messages, mobility, mac, PHY, network models, application layers and
several examples for WBAN. The role of the physical WBAN environment is to establish
the data transmission from the source to the destination. In this work, five WBANs are
considered, and each WBAN has distinct characteristics as follows,

• Communication Type: Off-body, on-body, body to body, off to off;
• Scenario Condition: Same room.

The simulation environment is illustrated in Figure 5. The following table represents
the simulation configuration for the proposed B-DEAH model. Furthermore, a detailed
description of body sensors for a single BAN configuration is represented in Table 4.
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Figure 5. Network topology.

Table 4. B-DEAH configurations.

Parameters Specifications

Simulation Parameters

Simulation Environment 1000 × 1000 m
Number of WBANs 1–5

Number of Body Sensors (Each BAN) 12
MAC type IEEE 802.15.6 MAC

Sensing Interval 0.1 s
Multiple access technique CSMA/CA

Packet size 512 bits
Bandwidth 20 MHz

Transmission rate 20 kpbs
Modulation (Data Rate) DQPSK (1000 Kbps)

Energy consumption 0.5 mW
Simulation time 50 s

Number of Sink Nodes 2(1-Emergency, 2-Periodical)
Transmission Rate 5 Packets/s

Number of PBA (each WBAN) 5
MAC Header Length 32

Number of Frame Slots 20
Slot Duration 1 s

Buffer Capacity 32
Block Size 2 KB

Block Chain Type Linear/Non-Linear
Key Size 80 bits

Passwords Alphabets/integer

System Setup

Operating System Windows 7 (32-bit)
Processor Dual core

RAM 4 GB and above

Figure 5 shows the simulation setup for the proposed B-DEAH using the OMNeT++
simulator. Figure 6 shows the network construction, and their components are represented.
Likewise, each BAN user is connected with the two sink nodes for both emergency and
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periodical data transmission via PBA. Based on the sensed data transmitted to the sink
nodes, the analysis was taken into account for the proposed work. The performance
analysis, such as QoS, security and energy efficiency, is described in the following section in
detail. The considered body sensors used for the implementation of B-DEAH are adjusted
with the dynamic threshold values for data type differentiation. Therefore, emergency and
periodical values for each body sensor are computed and depicted in Table 5.

Figure 6. OMNeT++ simulation environment for multiple ban and body sensors in single ban.

Table 5. Body sensors (emergency and periodical range).

Body Sensors Emergency (Data Range Units) Periodical (Data Range Units)

ECG ∼60–100 bpm >100 bpm
Heart Rate 60–100 bpm >100 bpm
Blood Pressure 120/80 mm/Hg ≥140 mm/Hg
Temperature >100 ◦F 97.8–99◦F
Oxygen Level <60 mm/Hg 80–100 mm/Hg
Respiratory <6 bps 30–40 bps
EEG <7 Hz >8 Hz

Use case (Cardiac Vascular Disease): Body sensors are specifically developed for the
purpose of collecting, monitoring, diagnosing and controlling human medical information.
From the body sensors, various health symptoms are periodically collected or in an emer-
gency state. A heart attack is a serious threat in almost all countries. Among all the types
of heart attacks, cardiovascular disease is the most prevalent disease worldwide. For this
disease, the death rate is growing gradually every year. In this paper, the application of
cardiac vascular disease is demonstrated for patients.

The prototype testing uses distinct sensors such as Heart BPM, ECG, blood pressure,
glucose, cholesterol, etc. The B-DEAH architecture is designed with node clustering, data
aggregation, and secure data transmission. In the PBA, emergency events are predicted
and transmitted to the cloud server and corresponding authority (ambulance, doctor or
clinics) via the emergency sink node. Sequential communication is performed, which is
started at the body sensors. An overview of the prototype model is represented in Figure 7.
After the collection of all sensed data from sensors, it is forwarded to the PBA through
Bluetooth or Wi-Fi. The PBA also collects the rest of the patient’s parameters, such as age,
sex, chest pain type, BMI, and smoking history. Finally, all the physiological parameters
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are transmitted, classified and used to predict the cardiac severity status of the patient and
sensed data types as emergency and periodical results to the patient.

Figure 7. Block diagram for CVD patients diagnosis.

5.2. Comparative Analysis

In this section, the details of the simulation results are discussed in detail. The
proposed B-DEAH is compared with three previous works, CF-EHARP, PCA and E-HARP.
The main sets of parameters that are taken into account for comparison are network
throughput, end-to-end delay, packet loss rate, authentication time, residual energy and
success rate. Furthermore, the efficiency of the work is compared with the previous works
with respect to fault data elimination check (%) and reliability (%) to the previous works.

5.2.1. Network Throughput

It is defined as the sum of data transmitted successfully to the destination node.
However, the increase in throughput shows higher performance. It is an important QoS
metric that shows the quality of the network in data transmission. Hence, maximizing the
QoS performance is important in WBAN. Mathematically, it is calculated as follows,

NetworkThroughput = P(s)/T(t) (16)

where P(s) is the size of the arrived packet and T(t) is the transmission time for a sin-
gle packet. Figures 8 and 9 represent the throughput analysis for emergency and non-
emergency packets, respectively.

Figure 8. Network throughput vs. simulation rounds (emergency packets).
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Figure 9. Network throughput vs. simulation rounds (periodic packets).

From the results obtained, it is proven that when the number of rounds increases,
the network throughput increases gradually for the proposed B-DEAH work. However,
the throughput performance is affected by long route acquisition delays, high routing
overhead, high traffic over a particular route, higher rated buffers, and so on. In PCA, a
large number of nodes are deployed but less effective in data transmission. The larger
communication overhead introduces low throughput. In the E-HARP protocol, nodes are
sparsely distributed, and communication is simple, which results in higher throughput
than PCA and B-DEAH. In the proposed B-DEAH method, efficient routing is performed by
conducting clustering using the SHO algorithm, which increases the throughput, thereby
increasing the QoS.

The extracted routing information for communication leads to higher throughput in
the B-DEAH model. For example, PCA attained 22.5 Kbps for 300 rounds, which is 50%
less than B-DEAH, and other works have more than 50% lower performance than B-DEAH.
Due to the path selection by the MOORA algorithm, throughput is obtained in a higher
range. For both, emergency and periodical packets are running simultaneously since two
different kinds of sink nodes are deployed for individual packet transmission. In B-DEAH,
RDF is utilized, whose main role is to remove the fault data packets over a path and thus
eliminate the transmission of the faulty packets. Therefore, throughput is increased when
the network rounds also increase.

5.2.2. End-To-End Delay

It is a time-based QoS metric that computes packet transmission between the source
and the end server. It computes in all stages after the packet is sensed at the source level.
Three kinds of delays are computed: propagation delay, processing delay, transmission delay
and queuing delay. The mathematical formulation for the delay is computed as follows,

End-to-End Delay = ∑
Pi∈P

TR(P) − ∑
Pj∈P

TS(P) (17)

where TR(P) is the sum of time taken for packets reception and TS(P) is the sum of time
taken for packets transmission.

Figure 10 represents the efficiency of delay for emergency packets. It is analyzed for the
number of simulation rounds. Delay increases gradually according to the simulation rounds
since the number of rounds depends upon the number of communications to the destination.
In Figure 11, the delay in B-DEAH is much smaller than that in previous works. A conflict
between emergency and nonemergency packet transmission is avoided in this work since
emergency packets are transmitted to the emergency sink and then to the monitoring server.
Hence, the waiting time of each packet is reduced by 50% compared to previous works.
Furthermore, emergency data are transmitted to separate channels and nonemergency, i.e.,
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periodical data packets forwarded using the best set of predicted channels. Thus, the delay
in channel selection is minimized in the proposed B-DEAH method.

Figure 10. End-to-end delay vs. simulation rounds (emergency packets).

Figure 11. End-to-end delay vs. simulation rounds (periodic packets.

Important (critical) messages must be transmitted more quickly than nonimportant
messages. In previous works, delay increased due to the interference between channels. The
delay difference between previous works is 15% less than PCA, 27% less than E-HARP and
50% less than CF-EHARP. The delay in the E-HARP is reduced due to the error correction
mechanisms. After error correction, original packets are transmitted between the source
and the destination. Similarly, PCA does not invoke any attackers in between the route so
that the overhead induced by the attackers is reduced. In the following, the performance
delay is computed for periodic packets.

5.2.3. Packet Loss Rate

However, the packet loss rate must be lower to show that the network has obtained
higher QoS. In general, the packet loss rate is reduced due to the lack of awareness of
the buffer rate and network size. Furthermore, the rate of packet drop increases when
malicious node presence is high, and in this case, wireless channels are vulnerable. Lack of
knowledge about the network increases the packet loss rate. This metric is computed by
the total number of packets transmitted from the source to the number of packets sent by
the destination.

A comparison of the packet loss rate with respect to the simulation rounds is depicted
in Figure 12. The proposed B-DEAH architecture addresses all the previous issues of higher
packet losses. An optimal channel selection method is introduced by considering multiple
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objectives, such as RSS, SNR, channel capacity and radio power. All sensed packets from
body sensors are represented with their QoS, and reliable transmission of packets occurs
between the source and destination pairs. Previous works E-HARP and CF-EHARP are
loss packets without the information of packet type. In B-DEAH, two sinks are deployed
in which PBA forward emergency requests to the first sink and nonemergency requests
forward to the second sink, which reduces the packet loss rate efficiently.

Figure 12. Packet loss rate vs. simulation rounds.

5.2.4. Authentication Time

It is an attack mitigation metric that calculates to avoid intrusions from failures as
authentication time. The authentication procedure is different for symmetric and asymmet-
ric algorithms. When compared to the asymmetric, symmetric algorithms consume less
energy since they are fast at default. The comparison of authentication time for B-DEAH
and 1W-hashing is depicted in Figure 13.

Figure 13. Authentication time vs. number of nodes.

From Figure 13, we can prove that the proposed B-DEAH scheme requires less time
for authentication. In PCA, traditional algorithms are used for encryption, i.e., ECC,
which consumes more time and energy from sensors. Authentication time must be less
for any kind of security mechanism. In 1W-hashing, smartcard-based authentication
is implemented by a hashing algorithm. Our proposed three factored security scheme
has had a greater impact than previous works. Key registration and authentication are
efficiently performed in the proposed work with lightweight algorithms, which reduce
the authentication time and increase security. This comparison confirms that the proposed
B-DEAH architecture ∼= 65% reduces the authentication time.
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5.2.5. Residual Energy

It is a major parameter in WBAN that measures the energy efficiency of the system.
The initial distribution of energy is equal for all sensors. The main issue in perceiving
WBAN communication is to manage the residual energy of body sensors. The residual
energy can be varied in accordance with the time, packet size and number of rounds of
processing. Furthermore, based on the connectivity to the neighbor sensors and coverage,
residual energy values are different. The shorter residual energy consumption for each
processing, such as sensing, transmission and reception, proves that the model is energy
efficient. A mathematical formulation of residual energy is given below,

RE(i) =
(Enode × Einit)

100
(18)

where Enode is the residual energy consumption rate of the node, Einit represents the energy
level at the initial stage. However, the transmission energy is directly proportional to the
distance from the source to the destination.

The residual energy defines the remaining energy of a sensor after transmitting a single
packet. As per the increase in the number of rounds, residual energy gradually decreases.
Residual energy is compared with the two parameters, simulation rounds and simulation
time, for both emergency and nonemergency packets. Previous works are reduced to
the lower level of residual energy at 50 rounds. Designing a lightweight framework
increases the QoS, which is achieved by three kinds of mechanisms: security by blockchain
technology, fault data elimination by RDF, and two sink deployment for emergency and
nonemergency packet transmission in the proposed B-DEAH method, which increases
the residual energy, thereby increasing the energy efficiency. Figures 14 and 15 represent
the residual energy in terms of simulation rounds for emergency and periodic packets.
Figures 16 and 17 represent the residual energy in terms of simulation times for emergency
and periodic packets.

Figure 14. Residual energy vs. simulation rounds (emergency packets).

Figure 15. Residual energy vs. simulation rounds (periodic packets).
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Figure 16. Residual energy vs. simulation time (s) (emergency packets).

Figure 17. Residual energy vs. simulation time (s) (periodic packets).

The proposed B-DEAH is 40% better than CF-EHARP, PCA and E-HARP. For every
communication, the residual energy of each sensor and relay sensor is considered for
multihop-based routing. The higher residual energy gives the higher network lifetime, and
the average behavior of the proposed work confirms that it does not take higher residual
energy and gives the stochastic nature of higher residual energy availability.

5.2.6. Success Rate

This parameter represents the success rate of data transmission over time. Due to colli-
sion and malicious node involvement, packet transmission is changed and fewer packets
are successfully reached to the destination. In this work, we compute the performance of
the success rate for the proposed B-DEAH and the existing works. Due to BAN mobility, the
success rate is often changed. fall into a lower level. To address this issue, proper network
design is an important part of any kind of network. A successful transmission shows no
collision, no attackers and no interference in channels. Mathematically, the success rate is
computed as follows.

SucessRate =
# o f sent packets

# o f received packets
(19)

Therefore, the packet transmission success rate is computed using the total number
of packets sent and the total number of packets received successfully. Figures 18 and 19
represent the success rate of the proposed B-DEAH model with respect to the simulation
time for the previous works.
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Figure 18. Success rate vs. simulation time (emergency packets).

Figure 19. Success rate vs. simulation time (periodic packets).

As per the route selected, packets are transmitted to the CH, and packet typewise
communication is established to the sink nodes via PBA. In the emergency sink, packets
are forwarded without any waiting delay. In previous works, a single sink-based packet
transmission decreased the success rate. In blockchain-based security and QoS provisioning
addresses, all the research challenges, such as packet tampering and authorization via
weak credentials, are eliminated. From Figures 18 and 19, it is perceived that the proposed
B-DEAH succeeded with a higher success rate, and previous works obtained a 40% lower
success rate.

5.3. Security & Efficiency Analysis

In this section, the security and efficiency of the work are discussed for the proposed
as well as previous works.

By increasing the strength of security, the proposed work is more secure against
different attackers. Apart from the CVD, the proposed model is capable of ensuring
high QoS, security and energy efficiency for many disease diagnosis applications. In the
following, we discuss the attacks mitigated in this system.

• BAN Impersonation Attack: In this attack, unauthorized patients attempt to submit and
access data from the cloud. However, the sensors from the body and environment
are compromised by the attackers. The authentication to the blockchain cannot be
compromised by an attacker and cannot be passed until the correct credentials are
submitted.

• Flooding Attack: In this attack, more illegitimate requests are forwarded by attackers.
Hence, sink nodes and any other communication devices cannot tolerate a high
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number of requests. For each BAN, the PBA’s role is to monitor and audit the abnormal
packets and notify this information to the blockchain and remote server.

• Path-based DoS Attack: DoS is a denial of service attack in which attackers’ behavior
is to exhaust the resources for sink nodes and other devices and creates a busy route.
This makes the huge delay in processing legitimate packets, and hence, the emergency
packet delay is higher and leads to more packet losses.

The efficiency of the work is analyzed using two parameters: fault data elimination
check and reliability. The comparison analysis of these two metrics is represented in
the following.

5.3.1. Fault Data Elimination Check

The proposed B-DEAH incorporates a fault data elimination check because the IoT-
based WBAN environment produces fault measurements, which are very high; therefore,
it is avoided using RDF. Earlier works concentrated on packet transmission and energy
consumption. The B-DEAH architecture determines the similarity between two or more
histories of old packets in the database. B-DEAH considers all packet header information.
The performance of the fault data elimination check is evaluated for B-DEAH and E-HARP.
From the analysis, it is confirmed that fault data packets are removed. Table 6 shows that
B-DEAH attains the performance of the fault data elimination check. Table 7 shows the
overall comparison of proposed and existing works.

Table 6. Fault data elimination check.

Number of BAN
Fault Data Elimination Check (%)

B-DEAH E-HARP

1 97.6 80
2 98.6 81.5
3 99.3 82.5
4 99.6 83.6
5 99.8 85

Table 7. Overall comparison of proposed and existing works.

Performance Metrics CF-EHARP PCA E-Harp B-DEAH

Throughput (Kbps)
Emergency Packets 20.8 ± 0.4 22.5 ± 0.3 23.8 ± 0.5 42.5 ± 0.1

Periodic Packets 20.08 ± 0.4 22 ± 0.2 23.11 ± 0.5 41.75 ± 0.1

End-to-end delay (s)
Emergency Packets 0.042 ± 0.3 0.039 ± 0.2 0.031 ± 0.4 0.028 ± 0.1

Periodic Packets 0.06 ± 0.3 0.052 ± 0.2 0.041 ± 0.5 0.036 ± 0.1

Packet loss rate (%) Number of rounds 5.18 ± 0.4 2.81 ± 0.2 9.83 ± 0.5 1.1 ± 0.1

Residual energy (J)

Simulation Rounds
Emergency Packets 0.03 ± 0.3 0.026 ± 0.2 0.03 ± 0.4 0.044 ± 0.1

Periodic Packets 7.55 ± 0.4 5.6 ± 0.3 5.68 ± 0.5 0.039 ± 0.1

Simulation time
Emergency Packets 7.51 ± 0.3 5.53 ± 0.2 5.6 ± 0.4 8.53 ± 0.1

Periodic Packets 57.3 ± 0.4 70.83 ± 0.3 53.33 ± 0.5 8.35 ± 0.1

Success rate (%)
Emergency Packets 57.33 ± 0.3 70.83 ± 0.2 53.33 ± 0.4 87.5 ± 0.1

Periodic Packets 57.33 ± 0.4 70.83 ± 0.2 53.33 ± 0.5 87.83 ± 0.1

Reliability (%) Packets per second 57.83 ± 0.4 70.83 ± 0.3 53.5 ± 0.2 87.83 ± 0.1

However, some intended packets are not determining the fault data in earlier works.
This mitigation aids in effective data aggregation and classification for minimizing the
end-to-end delay and energy consumption.
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5.3.2. Reliability

This metric evaluates the reliability provided by the presented schemes. This metric is
determined as the total change rate of the packets sent to the destination. This metric is
defined as the ratio between the number of packets affected or modified by the attackers
and the total number of packets transferred in the destination. This metric is high when
the overall system is free from attackers and congestion overhead. Figure 20 depicts the
performance of the reliability for the proposed B-DEAH and previous works such as E-
HARP, CF-EHARP and PCA. As a result of lightweight security schemes based on necessary
input criteria for all processes, the reliability of the proposed work is achieved.

Figure 20. Reliability vs. packets per second

6. Conclusions and Future Work

This paper proposes a new patient remote healthcare monitoring system for address-
ing the existing issues. The proposed B-DEAH model is designed for three types of
communications such as intra-WBAN, inter-WBAN and beyond-WBAN. For decentralized
communication and security, blockchain is deployed in an IoT-based WBAN environment.
A three factored security algorithm is proposed for patients registration, security creden-
tials are forwarded to KMS. For data transmission and energy consumption reduction, the
clustering process is initiated. Spotted hyena optimizer is used for clustering that computes
the best CH using the fitness of prey and updates position accordingly. Then intracluster
routing is implemented using the MOORA algorithm. It improves the performance of
packet success rate and avoids packet losses and delays. In PBA, three operations are used
such as classification and queue management, security provisioning and channel selection
by TS-DNN in DRL, four-Q-curve for PBA authentication and packets encryption using the
PRESENT algorithm, and multi-objective based channel selection algorithm. Then packets
are forwarded to the emergency and periodical sinks in accordance with the priority. The
simulation is conducted for various performance metrics as QoS, energy efficiency and
security. Based on the results noted, the proposed B-DEAH provides better performance
than previous works. In the future, we intended to focus on the following aspects,

• Investigation of mobility since mobility is a crucial parameter of BAN. The human
body parts are in motion constantly. Here, we planned to use handover mechanisms
for mobility management.

• Duty cycling MAC scheduling is studied for managing the energy level of each
body sensor.

• Furthermore, other emerging medical diagnosis applications are concentrated for user
physiological parameter analysis, such as diabetes, asthma, Parkinson’s disease, or
COVID-19.
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